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Abstract: This work applies µ analysis and synthesis techniques to develop a robust strategy
for damping resonant modes in micromachined directional microphones of the parallel capacitive
type. By properly selecting a weighting function, a robust controller is successfully designed via
the D-K algorithm. Linear simulations show that the resonant mode of a directional microphone
can be flattened out, and pushed to a frequency beyond the sensitivity of the human ear. The
closed loop responses are free of ringing effects observed in open loop even for the worst-case
parameter values.
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1. INTRODUCTION

This paper deals with the damping of unwanted resonance
modes in directional microphones (Tan et al. [2002])and
the model uncertainty that characterizes their manufactur-
ing process. The parameter uncertainty of the microphone
is addressed via standard robust synthesis techniques, and
the nonlinearity of the feedback force is circumvented
by placing restrictions on the magnitude of the electro-
static force. By tightly bounding the magnitude of the
electrostatic force around some predetermined operating
point, linearization becomes a valid approach to design
and analysis.

In terms of resonance damping, this paper extends previ-
ous work presented by Wu et al. (Wu et al. [2004]) where
feedback control is applied to actively damp the resonant
frequency of a micromachined directional microphone of
the parallel plate configuration, and the nonlinearity in
electrostatic force is overcome by using a digital imple-
mentation called a sigma-delta (Σ∆) control-loop by the
authors borrowing the sigma-delta modulator technology
(Azis et al. [1996]). However, uncertainties in design model
were not considered in the earlier work.

A major design limitation of a parallel plate device is the
thermal noise induced by passive damping (Gabrielson
[1993]), usually due to viscous flow of air between the
diaphragm and the backplate that form the capacitor. De-
sign of a low noise directional microphone requires special
consideration to achieve low passive damping, such as us-
ing a porous backplate (Miles et al. [2004], Homentcovschi
and Miles [2004]). Low damping however, results in severe
ringing effects at the natural mode of the diaphragm,
and therefore degrades the microphone performance. One
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possible way to avoid the adverse effects of low damping on
the dynamic response is to introduce active damping into
the microphone system. By introducing active damping
through a control feedback loop, the microphone can be
designed with low passive damping to reduce thermal
noise and obtain high effective damping to improve sys-
tem dynamic response (Qu et al. [2007]). A successful
implementation of feedback control would also increase the
bandwidth of the microphone by pushing out the resonant
frequency beyond the range of human hearing.

The microphone dynamics are governed by
Ms = Iθ̈ + ctθ̇ + kt(θ − θo) (1)

where I is the moment of inertia of the diaphragm, ct
and kt are the torsional damping coefficient and the
torsional stiffness respectively, θo is the initial angular
displacement of the diaphragm, and Ms is the moment
generated by the incident acoustic pressure gradient (Qu
et al. [2007]). The task of designing a controller for (1) is
complicated by the fact that the values for I, ct and kt
cannot be controlled precisely during the manufacturing
of the microphone. The synthesis of a controller that
successfully damps the resonance of (1) in the face of
the uncertainty in its parameters is the main focus of
this paper. Table 1 presents experimental data showing
the variation of parameters for a typical batch of micro-
machined directional microphones.

Table 1: Plant Parameter Data
Parameter Nominal Value Units Variation

I 6.2662× 10−15 Kg ·m2 10 (%)
ct 6.5909× 10−12 Kg ·m/s 15 (%)
kt 1.7331× 10−5 Kg ·m/s2 10 (%)

This paper is organized as follows: Section 2 gives an
overview of the directional microphone system, and estab-
lishes a suitable design model for the purpose of robust
control synthesis. Section 3 formulates the control de-
sign as a µ-synthesis problem with structured uncertainty.
Section 4 presents the synthesis of a robust controller
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that solves the µ-synthesis problem. Section 5 presents
simulation results that validate the design of the robust
controller.

2. DESIGN MODEL OF THE MICROPHONE

The system under consideration is a directional micro-
phone whose principle of operation has been inspired by
the auditory system of the parasitoid fly Ormia ochracea
(Miles et al. [1995, 2004], Tan et al. [2002]). This fly has
evolved mechanically coupled eardrums that allows it to
achieve a remarkable sensitivity to sound pressure gradi-
ents despite its small size. This biologically engineered sys-
tem has motivated the development of a new generation of
directional microphones consisting of a hinged conductive
diaphragm (about 1mm × 2mm in area, and 4 ∼ 5µm
in thickness) that moves in response to sound pressure,
and two electrically mutually isolated backplates acting
as electrodes that lie side by side and are separated from
the diaphragm by a small gap (about 5µm)(Miles et al.
[2004], Tan et al. [2002]). The lowest resonance mode for
this system depends on the actual dimensions of the device
and the final layout achieved during the manufacturing

process. This resonance, which is given by
√

k
m , limits the

bandwidth of the system and degrades the performance of
the microphone if it occurs within the frequency range of
interest. It is desirable to control the system by applying
an electrostatic force to damp undesirable oscillations due
to resonance. This electrostatic force is nonlinear as it is
proportional to the square of the voltage applied. Because
of the configuration of the two isolated backplates playing
the role of voltage-to-force transducers, the feedback force
energizes the two backplates one at a time, through a
couple of nonlinear switches. The two feedback signals pull
on the corresponding side of the diaphragm to affect the
damping (Wu et al. [2004]). Additionally, the capacitance
between the parallel plates and the diaphragm is a function
of the linear displacement x. This nonlinear force can be
expressed as follows,

Fe = f(x)[Vo + Vs]2 (2)

In (2), Vo is a bias voltage, Vs is the voltage applied via
feedback control, and f(x) is defined as a negative function
in the region of interest. Since Fe is a function of the
linear displacement between the plates and the diaphragm,
the governing equation in (1) can be represented in terms
of force, mass, linear damping and stiffness by applying
the adequate change in coordinate system θ = x/L. The
governing equation for the system with feedback is then
expressed as

Fs + Fe = mẍ+ cẋ+ kx (3)

where Fs and Fe are the forces due to sound and elec-
trostatic feedback respectively, and m, c, and k are the
translational parameters of the system in (1). In (2), Vo can
be selected to deflect the diaphragm to a desired operating
point x∗ satisfying

k(x∗ − xo) = f(x∗)V 2
o (4)

at the equilibrium. Due to the variability of the fabrication
process of the microphone, xo varies from device to device,
and so does x∗. Let xs = x−x∗. where xs is the incremental

displacements associated with the sound pressure around
x∗. Subtracting (4) from (3) yields

mẍs + cẋs + kxs = f(x)[Vo + Vs]2 − f(x∗)V 2
o + Fs (5)

By manipulating the right hand side of (5), the nonlinear
terms can be rewritten in the following form:

V 2
o f̂(x̄)xs + 2Vof(x)[1 +

Vs
2Vo

]Vs (6)

in (6), x̄ is between x and x∗ according to the Mean Value
Theorem. Now let the term V 2

o f̂(x̄)xs be represented by an
uncertain parameter ke whose value depends on the initial
displacement of the diaphragm xo. (3) becomes,

mẍs + cẋs + (k − ke)xs = 2Vof(x)[1 +
Vs
2Vo

]Vs + Fs. (7)

The introduction of ke adds additional uncertainty to the
stiffness parameter of the system. The term 2Vof(x)[1 +
Vs

2Vo
] captures the nonlinearity in the electrostatic force ap-

plied between the plates. The nonlinearity associated with
f(x) is determined by the electric flux density distribution
of the capacitive configuration, which can be considered
linear in the device and operating range of interest. In
order to minimize the effect of uncertainty due to Vs,
the control voltage Vs is assumed to be sufficiently small
compared to the bias voltage Vo. This assumption can be
satisfied by imposing control magnitude restrictions during
the design of the controller. Then, equation (6) can be
approximated to the following expression:

mẍs + cẋs + (k − ke)xs = kvVs + Fs, (8)

where kv = 2Vof(x). The transfer function that describes
the dynamics of the system is given by

Gp(s) =
1

ms2 + cs+ k
(9)

The values for k and m that define the natural frequency
are uncertain parameters, where the effect of uncertain
ke has been absorbed into k. Thus the need arises to
synthesize a controller that robustly stabilizes the plant
despite parameter uncertainties. The damping coefficient
c is also uncertain and affects the noise performance of the
system. Table 1 shows the range of parameter variations.

The uncertain plan parameters can be represented in the
following multiplicative form:

m = m̄(1 + Pmδm)
cd = c̄(1 + Pcδc)
ks = k̄(1 + Pkδk)

(10)

In (10), m̄, c̄ and k̄ are nominal values; Px reflects our
knowledge about the parameter variability and δx normal-
izes that variability in the range [-1 1]. Thus, m, cd, and
ks are the uncertain parameters of the transfer function
in (9). The parameter variations assumed in this paper
are Pm = Pk = 10% and Pc = 15%. The presence of
uncertainty in both the parameters of the nominal transfer
function, as well as unknown dynamics of the system
at higher frequencies, motivates the formulation of a µ-
synthesis problem to introduce robustness in the response
of the system. The results of this effort will be discussed
in the following sections.
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Fig. 1. Plant diagram with uncertainties isolated

Many challenges still exist in the design and fabrication
of the directional microphone as explained by Tan et al.
[2002]. Some of those challenges include the measurement
of diaphragm displacement via optical sensors and the
actuation via a nonlinear electrostatic force. Nonlinearities
may be assumed to be negligible by placing restrictions
on the magnitude of the control signal. This allows the
application of linear robust techniques to synthesize the
controller. The actual performance of the system can be
evaluated using nonlinear simulations.

3. µ-SYNTHESIS

In order to represent the system as a Linear Fraction
Transformation (LFT) of the uncertain parameters of the
plant, the uncertain parameters must be isolated (Zhou
and Doyle [1998]). Figure 1 shows the interconnection of
the system built from the equation of motion (1) with the
uncertain parameters isolated.

The M block in figure 1 is a 2 by 2 matrix that satisfies
the following LFT,

Fl(M, δm) =
1
m

M =
(

1
m

−0.1
m

1 −0.1

) (11)

Additionally, the δ’s are isolated in separate blocks. Isolat-
ing the δ’s allows the formulation of a general framework
in which uncertainty is modeled as a structured block ∆
as shown in equation (12).

∆ =

(
δm

δc
δk

)
(12)

Defining the ∆ block allows for the uncertainty to be
modeled as external inputs to the nominal plant. The
overall plant, including a robust controller κ̂ is shown in
figure 2. The structured block ∆ can be absorbed into P
via an upper LFT.

G = Fu(P,∆) (13)

Then, finding a controller that stabilizes the set of per-
turbed plants is reduced to minimizing the H∞ norm of
the LFT

min
κ̂
‖ Fl(G, κ̂) ‖∞ (14)
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Fig. 2. General Framework for µ-Analysis/Synthesis

which can be solved via D-K iteration using the Robust
Control Toolbox in Matlab, provided that an appropri-
ate weighting function is selected to reflect performance
requirements.

3.1 Performance Weighting Function Wperf

The design objective for this problem is the attenuation
of resonant frequencies up to the maximum frequency of
interest, or about 20 KHz. A successful robust design
ultimately depends on the designer’s ability to select an
appropriate weighting function that minimizes disturbance
signals (Zhou and Doyle [1998]). Therefore, a weighting
function was selected to place emphasis on a frequency
range which encompassed all possible resonances given the
specified parameter uncertainty. The selected weighting
function was found iteratively, keeping in mind that the
magnitude of the sensitivity function has to be less than
the inverse of Wperf . Hence, in order to push down the
magnitude of the sensitivity function at the resonant
frequencies of the entire set of uncertain plants, Wperf

must place more weight at these frequencies. Additionally,
it was found convenient to have the weighting function roll
off rapidly at some point in order to keep the bandwidth
of the closed loop system around 20 KHz. The resulting
weighting function is a proper, rational function of third
order:

Wperf=
8×10−5(s+3.4×106)(s+2.3×105)(s+628)

(s+1×104)(s+2298)(s+1118)
(15)

Figure 3 shows the frequency response of Wperf . Note
that Wperf weighs some frequencies more than others to
emphasize the design requirements, and rolls of quickly
because system performance beyond a certain frequency
is not important.

4. A SOLUTION TO THE µ PROBLEM

Following the selection of an appropriate weighting func-
tion, the process of finding a suitable stabilizing controller
can be carried out via D-K iteration. The weighting func-
tion is placed at the output of the controller as shown in
figure 4, thus Wperf weighs the closed loop performance,
and to some degree, the magnitude of the control signal.

The feedback gain kv is a constant proportional to f(x).
In order to account for nonlinearities in f(x), kv is defined
as an uncertain parameter with a small variation of 0.1%.
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Fig. 3. Weighting Function Wperf

Fig. 4. Closed Loop System

This approximation is valid as long as x does not vary
significantly.

µ-synthesis must be solved iteratively because the µ prob-
lem has not been fully solved (Zhou and Doyle [1998]).
The D-K algorithm usually yields high order controllers
that can often times be reduced to low order controllers
via standard reduction techniques. In the problem be-
ing considered in this paper, approximating a high order
controller by a low order one must be fairly accurate
within the range of frequencies where resonance modes
exist. Doing so, limits our ability to reduce a high order
controller by a low order one without losing closed loop
stability. Because of this, the controller being proposed
here is of order 8. Table 2 lists gain, zeros, and poles of
the synthesized controller.

Zeros Poles
−1225 −1962

−2510± 52143 −3471
−50340± 48180 −131± 48904
−39475± 112397 −36± 57039

−1052211± 1050633
Gain = 4913

Table 2: Poles and Zeros of Robust Controller

Table 2 shows that the proposed controller is a strictly
proper, minimum phase rational function. The effect that
this controller has in the closed loop system can be in-
vestigated by comparing the open loop response (without
a controller), and the closed loop response with the con-
troller in the forward path. Figure 5 shows a comparison
for both open and closed loop frequency responses, as well
as the frequency response of the controller alone.
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Fig. 5. Open Loop Vs. Closed Loop Responses

It should be noted that the closed loop response shown in
figure 5 not only represents the dynamics of the nominal
plant, but also a set of perturbed plants. In other words,
figure 5 shows that the proposed controller flattens out
the resonance of not only the nominal plant, but also a set
of plants which reflect the variability in the parameters of
(9). The bandwidth of the closed loop system is still limited
by the effect of resonance, but those frequencies are now
located beyond the range of sensibility of the human ear.

5. VALIDATING ROBUST PERFORMANCE

Validating the results obtained in the previous sections can
be done both analytically and via simulation. In order to
do robust performance analysis, another uncertain block
must be defined. This performance block, ∆f is a ficti-
tious perturbation to the system that models performance
requirements. Then, the structured perturbation block ∆
can be redefined as follows:

∆P =
(

∆ 0
0 ∆f

)
(16)

The performance block ∆f is complex valued with nominal
value of 0 and norm bounded by 1:

‖ ∆f ‖∞ ≤ 1 (17)

The performance perturbation block can be absorbed into
the system using an upper linear fractional transformation.
Now the robust performance problem becomes a regular
robust stability problem with a structured perturbation
block that includes a performance block (Zhou and Doyle
[1998]). Using the robust control toolbox in Matlab to
solve for the robust stability of the system (Balas et al.
[2007]), including the perturbation in (16), shows that
the closed loop system is robustly stable for the given
parameter uncertainty. Furthermore, since the structured
perturbation block ∆P includes the performance block ∆f ,
the closed loop system also exhibits robust performance for
the modeled parameter uncertainty.

Linear simulations were performed using Simulink to verify
the effect that the implementation of active damping via
linear robust control techniques has on the closed loop
performance of the directional microphone. The simulation
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Fig. 6. Simulink Set Up for Linear Simulation
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Fig. 7. Worst-Case Gain for Open Loop Vs. Closed Loop

was set up as shown in figure 6. The input data is an array
with samples from a recorded sound wave. The model
simulates and records data for both, open and closed loop
set ups.

From a practical point of view, the real test is to find out if
the proposed controller robustly stabilizes the plant when
the actual parameters of the system form the so called
worst-case gain (Balas et al. [2007]). That is to say, when
the parameters of the uncertain plant take on values that
would drive the system close to the point of instability,
at least within the specified range of variability for each
parameter. If it can be guaranteed that the closed loop
system achieves both robust stability and performance
even for the worst-case, then any other random sample
taken from the family of perturbed plants must also be
stable and exhibit robust performance. Figure 6 shows
a comparison between the worst-case open loop response
of the microphone using passive damping (No controller),
and the worst-case closed loop response of the system with
active damping.

It is obvious that the response of the microphone without
active damping suffers considerably, thus affecting per-
formance. This is due to the sensitivity of the system
to components of the input signal that have the same
frequency as the natural mode of the plant. The closed loop
case however, removes the unwanted oscillations despite
the fact that the parameters of the plant are the worst-
case for the given variability.
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Fig. 8. Plot of xs

Since the output of the closed loop system is the output of
the controller, then the plot for the closed loop output
shown in figure 7 is also the signal Vs. Therefore, the
magnitude of Vs is in the order of 10−10, and the value
of Vo can be freely selected to satisfy assumptions made
earlier to obtain (8). A suitable value of 0.1 for Vo has been
proposed by Qu et al. [2007]. Furthermore, the assumption
that f(x) is constant can be validated by looking at the
signal xs. The assumption here is that the variation of xs
is very small, thus f(x) is a constant with a small degree of
uncertainty. Figure 8 shows the output of the microphone
xs. The small range of variation for xs with respect to the
separation between plates validates the assumptions made
earlier for f(x).

6. CONCLUSION

The main point of this paper is to prove the feasibility of
applying robust control techniques to improve the perfor-
mance of a MEMS device. Successful implementation of
a robust controller in MEMS applications helps avoid the
need to tune controllers for different samples of the same
device. The strategy presented here helps alleviate the
performance issues associated with parameter variability
in MEMS. Consequently, a robust strategy would improve
the yield during the manufacturing process and make
MEMS more cost effective.
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